A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations
نویسندگان
چکیده
Standard multigrid algorithms have proven ineffective for the solution of discretizations of Helmholtz equations. In this work we modify the standard algorithm by adding GMRES iterations at coarse levels and as an outer iteration. We demonstrate the algorithm’s effectiveness through theoretical analysis of a model problem and experimental results. In particular, we show that the combined use of GMRES as a smoother and outer iteration produces an algorithm whose performance depends relatively mildly on wave number and is robust for normalized wave numbers as large as 200. For fixed wave numbers, it displays grid-independent convergence rates and has costs proportional to the number of unknowns.
منابع مشابه
Multilevel Krylov Method for the Helmholtz Equation
In the first part of the talks on multilevel Krylov methods, Reinhard Nabben discussed the underlying concept of the method and showed by some numerical examples the effectiveness of the method. In this talk, we extend the application of the multilevel Krylov method to the indefinite, high wavenumber Helmholtz equation. In this case, we consider the preconditioned Helmholtz system, where the pr...
متن کاملOn a Multilevel Krylov Method for the Helmholtz Equation Preconditioned by Shifted Laplacian
In Erlangga and Nabben [SIAM J. Sci. Comput., 30 (2008), pp. 1572–1595], a multilevel Krylov method is proposed to solve linear systems with symmetric and nonsymmetric matrices of coefficients. This multilevel method is based on an operator which shifts some small eigenvalues to the largest eigenvalue, leading to a spectrum which is favorable for convergence acceleration of a Krylov subspace me...
متن کاملMultigrid and Krylov Subspace Methods for the Discrete Stokes Equations
Discretization of the Stokes equations produces a symmetric indefinite system of linear equations. For stable discretizatiom a variety of numerical methods have been proposed that have rates of convergence independent of the mesh size used in the dkretization. In this paper we compare the performance of four such methods, namely variants of the Uzawa, preconditioned conjugate gradient, precondi...
متن کاملShifted-Laplacian Preconditioners for Heterogeneous Helmholtz Problems
We present an iterative solution method for the discrete high wavenumber Helmholtz equation. The basic idea of the solution method, already presented in [18], is to develop a preconditioner which is based on a Helmholtz operator with a complex-valued shift, for a Krylov subspace iterative method. The preconditioner, which can be seen as a strongly damped wave equation in Fourier space, can be a...
متن کاملMultigrid based preconditioners for the numerical solution of two-dimensional heterogeneous problems in geophysics
We study methods for the numerical solution of the Helmholtz equation for twodimensional applications in geophysics. The common framework of the iterative methods in our study is a combination of an inner iteration with a geometric multigrid method used as a preconditioner and an outer iteration with a Krylov subspace method. The preconditioning system is based on either a pure or shifted Helmh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 23 شماره
صفحات -
تاریخ انتشار 2001